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The motion of a sphere along the axis of rotation of an incompressible viscous fluid 
that is rotating as a solid maas is investigated by means of numerical methods for 
small values of the Reynolds and Taylor numbers. The Navier-Stokes equations 
governing the steady axisymmetric flow can be written as three coupled, nonlinear, 
elliptic partial differential equations for the stream function, vorticity and rotational 
velocity component. Two numerical methods are employed to solve these equations. 
The first is the method of series truncation in which the dependent variables are 
expressed as series of orthogonal Gegenbauer functions and the equations of motion 
are then reduced to three coupled sets of ordinary differential equations, which are 
integrated numerically subject to their boundary conditions. In  the second method, 
specialized finite-difference techniques of solution are applied to the two-dimensional 
partial differential equations. These techniques employ finite-difference equations 
with coefficients that depend upon the exponential function; a particularly suitable 
form of approximation for use in calculating numerical solutions is obtained by 
expanding the exponential coefficients in powers of their exponents. 

Calculated results obtained by the two methods are in good agreement with each 
other. The calculations have been carried out according to  theoretical assumptions 
that simulate the experiments of Maxworthy (1965) in which the sphere experiences 
no resultant torque exerted by the surrounding fluid and is free to  rotate with constant 
angular velocity. Numerical estimates of this angular velocity and of the drag exerted 
by the fluid on the sphere are found to agree well with the experimental results for 
Reynolds and Taylor numbers in the range from zero to unity. The results for small 
values of the Reynolds number are also consistent with theoretical work of Childress 
(1963, 1964) which is valid as the Reynolds number tends to zero. 

1. Introduction 
The motion created by a sphere moving along the axis of rotation of a rotating 

fluid is of great interest since in this flow two kinds of basic motion, rotation and 
translation, interact and modify each other. Many novel features are introduced into 
the possible types of motion of a fluid due to the effects of rotation, as indicated by 
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Greenspan (19683) and Maxworthy (1970). In  a viscous fluid the flow depends upon 
two dimensionless parameters, namely the Ekman number E = u/o0a2 and the 
Rossby number R, = U/2wOa, where a and U denote the radius and the velocity of 
the sphere respectively, oo is the angular velocity of the mass of rotating fluid and u 
is the coefficient of kinematic viscosity of the fluid. The reciprocal of the Ekman 
number is the Taylor number T = azwo/u and the ratio 2R0/E is the usual Reynolds 
number R = Ua/v.  In  the present calculations we have concentrated on small values 
of R and T in the range from zero to unity, which in essence is the range covered by 
the experiments of Maxworthy (1965). 

Taylor (1921) observed experimentally that, when a sphere is allowed t.0 move 
slowly through a fluid that is in a state of solid-body rotation, a column of fluid is 
pushed ahead of the sphere like a solid mass having zero axial velocity relative to tthe 
moving body. This phenomenon is now known as the Taylor column and was pre- 
dicted theoretically by Proudman ( 19 16). Taylor reported that this columnar type of 
regime appears for values of l/Ro above about 6. Further observations by Long 
(1953) demonstrated the existence of a train of waves downstream of a conical body 
with a hemispherical front surface at small values of l/R,. When 1/R, approached 
a value of about 6, a strong cyclonic vortex behind and a Taylor column ahead of the 
body was observed. In  order to explain the essential features of this type of flow there 
have been numerous theoretical studies of the problem, for example by Taylor (1917, 
1922), Grace (1926), Stewartson (1952, 1958, 1968), Morrison & Morgan (1956), 
Moore & Saffman (1968,1969), Miles (1969), Barnard & Pritchard (1975) and Hocking, 
Moore & Walton (1979). 

The uniform slow motion created by a sphere moving along the axis of rotation of 
a viscous fluid has been examined theoretically by Childress (1964) for small values 
of R and T. By means of singular perturbation techniques he obtained a solution 
which satisfies the no-slip and zero-torque conditions on the sphere and also the 
conditions valid far from the sphere, namely that the fluid rotates with constant 
angular velocity about the axis of translation of the sphere. The problem was finally 
solved by matching techniques and an analytical expression for the correction to the 
drag formula of Stokes, which holds when T = 0, was obtained. Maxworthy (1965) 
measured experimentally the drag on a sphere as it moves along the axis of a rotating 
viscous fluid at  small values of R and T. He found that for a fixed value of R the drag 
is increased as the rotation parameter T increases. His results in general confirm the 
theory of Childress. However, this theory is valid only for such small values of R and 
T that more comprehensive solutions of the Navier-Stokes equations are necessary 
to confirm Maxworthy’s experiments even over this range of R and T; such solutions 
are sought numerically in the present study. 

In  a more extensive set of experiments for a larger range of values of R and T, 
Maxworthy (1970) observed forward separation of the axisymmetric flow past a 
sphere moving in a rotating fluid with the formation of an upstream separation bubble. 
The sphere is surrounded by a thin annular region within which the velocity is larger 
than the mean velocity of the approaching flow and a vortex-jump phenomenon is 
found to occur in several regions. The boundary-layer separation from a sphere in a 
rotating fluid has been calculated by Miles (197 1)  using a least-squares approximat,ion 
and on the hypothesis that the flow exerts no upstream influence. A reversed flow is 
found to occur in the neighbourhood of the forward stagnation point, for l/Ro > 2.2 
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and is accompanied by a forward separation bubble such as observed by Maxworthy. 
For small values of R and T, a perturbation solution giving the flow past a stationary 
and spinning sphere in a rotating fluid has been obtained by Singh (1975a, b). A 
region of reversed flow and vortex formation is found to occur near the front or rear 
stagnation point, or both, depending upon the values of R and T and the angular 
velocity of the sphere. 

Hocking et al. (1979) calculated the drag on a sphere moving along the axis of a long 
finite rotating container when the length of the Taylor column is comparable to  the 
axial length of the container. The Rossby and Ekman numbers were both assumed to 
be small. The determination of the drag involves solving dual integral equations. The 
drag on the sphere is found to be greater in the case when the sphere is in the container 
than its value in an unbounded fluid, but the increased value is smaller than that 
measured by Maxworthy (1970). Recently, Dennis & Ingham (1981) have described 
a specialized numerical method for determining the flow created by the slow motion 
of a sphere in a viscous rotating fluid. The method is based on finite-difference equa- 
tions approximating the brtsic governing equations which, because of their specialized 
nature, involve the exponential function. By expanding the exponentials in powers 
of their exponents an approximation is arrived at which is very suitable in the numeri- 
cal calculations. Some illustrations of the method were given which confirm the 
theoretical work of Childress (1964) for very low values of R in the case T = 0 but 
these illustrations did not cover the range of the expe;imental work of Maxworthy 
(1965). 

In  the present paper the object is to obtain numerical solutions of the equations 
governing the problem considered experimentally by Maxworthy (1965) over the 
same range of small values of R and T. Two independent numerical schemes are 
employed and the results are used to check each other. The fist scheme is the two- 
dimensional finite-difference method described in detail by Dennis & Ingham (1981) 
qnd the second is the method of series truncation. Some details of recent applications 
of this latter method to determine flows due to rotating spheres without translation 
have been given by Dennis & Singh (1978) and Dennis, Singh & Ingham (1980) in the 
case of steady-state flows and by Dennis & Ingham (1979) for an unsteady flow. In  
the series-truncation method the basic partial differential equations are reduced to 
infinite sets of ordinary differential equations by means of a series substitution. For 
the present problem the independent variables are spherical polar co-ordinates (r,  8 ,$ )  
with all quantities independent of $ owing to axial symmetry. The modified co- 
ordinate 5 = In (./a) is introduced and then all quantities depend only on (6, o). Finally, 
the dependent variables are expressed as series of orthogonal Gegenbauer functions 
with argument p = cose and variable coefficients which are functions of 5. On sub- 
stitution of the series in the Navier-Stokes equations, the problem is reduced to the 
solution of three infinite sets of second-order ordinary differential equations in three 
dependent variables. 

The ordinary differential equations are reduced to a finite set by truncation of the 
series to a finite number of terms and the finite set of equations is solved by numerical 
methods. The numerical methods are in principle similar to those employed by 
Dennis & Singh (1978) and Dennis et al. (1980) except that, whereas ki both of those 
cases the integration range was finite, here it is infinite. In  theory, boundary con- 
ditions are specified at 5 = 0 and as s+co, but in practice the conditions as (+co 
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must be replaced by conditions at some large distance 5 = tm. This problem is dealt 
with by performing a solution with some definite specified value of at which the 
conditions as E + 00 are assumed and then, after this approximate solution has been 
obtained, increasing and obtaining a new approximate solution. The process is 
then repeated until there is no significant change in the main properties of the solution 
to within a definite tolerance, taken to be about 0.1 yo. Numerical solutions obtained 
by means of this procedure using finite-difference approximations, with grid sizes 
judged to be sufficiently small and a sufficiently large number of terms in the approxi- 
mating series expansions, are found to give results in good agreement with the experi- 
ments of Maxworthy (1  965) and to be consistent as R --+ 0 with the theory of Childress 
(1964). 

2. Formulation of the problem 
We take co-ordinate axes which are fixed in direction and with origin at the centre 

of a sphere of radius a which is moving with constant velocity U in the negative 
z-direction in an incompressible viscous fluid. The whole mass of fluid is rotating with 
axial symmetry about the z-axis and in such a way that the angular velocity at large 
enough distances from the sphere is constant and equal to w,,. The sphere is assumed 
to be free to rotate about the z-axis in such a way that the torque exerted on it by the 
rotating fluid is zero. We use spherical polar co-ordinates (T,  0, #) and since the motion 
is axially symmetric about the z-axis, all quantities are independent of #. If the trans- 
formation $ = In (r la)  is used, the Navier-Stokes equations can be expressed in the 
form (Dennis & Ingham 1981) given by 

D25= - Re-6 [(----- a+aag a+aag 
sine ae at  a t  ae 

In  these equations 
a2 a 
at2 a t  

D2 = _ _ _  

and +, Qee-r/sin 0, ge-E/sin 8 are the dimensionless stream function, angular velocity 
and vorticity respectively. The dimensionless velocity components (vr, vg, v&, obtained 
by dividing the dimensional components by U ,  are related to +and R by the equations 

The actual dimensional variables, 
by the equations 

(4) 
e-% a+ R e-6 
smeat7 ‘F- sin 0 ‘ 

vo = --- 

denoted by quantities with asterisks, are related 



Trahslation of sphere in rotating viscous Juid 255 

and hence we have the relations 

$* = a2U$, 51* = a2q,Q, (6) 

between dimensional and dimensionless quantities. 
It is assumed that during the course of the motion the sphere is free to rotate with 

a constant angular velocity subject to no resultant torque exerted on it by the fluid. 
The boundary conditions on the dimensionless functions $ and 51 are then 

where 6 is the ratio of the angular yelocity of the sphere to that of the fluid at large 
distances from the sphere. These conditions are appropriate for the functions governed 
by (1)-(3), but it is also possible to consider the problem in terms of a perturbation 
from the flow a t  large distances from the sphere by substituting 

$ = &egain2e++, 51 = egsin28+b. (8) 

The equations satisfied by 6, $ and (5 are easily found from (1)-(3) and will not be 
given in detail. The boundary conditions at the surface of the sphere and at large 
distances are 

O ; }  (9) 
J = aJ /a [  = -sin2e, 6 = ( a - q a e  when 5 = 

e-ga$/ae+o, e-ga+/a[-+o, Q-+O as 5+03. 

The conditions at large distances from the sphere are that the velocity components 
of the perturbation must tend to zero. We shall return to these conditions later. 

Two methods of solution have been adopted, both involving numerical methods. 
In  one of these we work in terms of fi, $ and c and use the method of series truncation, 
in which the governing equations are reduced to infinite sets of ordinary differential 
equations. In  the second (1)-(3) are approximated by a two-dimensional finite- 
difference method subject to the boundary conditions (7), where the conditions as 
$+a are assumed to hold at some large-enough finite value f = &,,. The essential 
details of this method have been given by Dennis & Ingham (1981) and we shall 
mainly give details of the series-truncation method here. 

3. Solution by the series-truncation method 
The application of this method to the present problem follows more or less the 

work of Dennis & Singh (1978) but, since in the present case we use the perturbation 
functions defined in (8), extra terms appear in the basic equations. The equations 
governing 6, $ and 5 are, in fact, the same as (1)-(3) with the interchange of 51 and $ 
with the corresponding perturbation functions and the addition of the respective 
terms 



256 S. C. R. Dennis, D. B. Ingham and S. N .  Singh 

to the right-hand sides of ( 1 )  and ( 3 ) .  The assumption of expansions for the dependent 
variables in series of Gegenbauer functions is similar to that of Dennis & Singh (1978) 
and Dennis et al. (1980) except that here there is no symmetry of the flow about 
0 = &r and the assumptions must reflect this fact. We thus assume 

Herep = cos B and In(,u) are the Gegenbauer functions of the first kind and of order n. 
Sampson (1891)  discussed the properties of the Gegenbauer functions, which form a 
set of orthogonal functions in the interval ,u = - 1 to ,u = 1 ;  and the main properties 
required in the present application are given by Dennis & Singh (1978).  

The governing equations for a, J and g are fist expressed in terms of ,u and then, 
on substitution of the expansions (12),  we obtain 

f,.II-fA-n(n+l)fn = n(n+1)(2n+1)RetRn, ( 1 3 )  

gi-gL-n(n+ l)g,  = -exhn, (14) 

h:-h;-n(n+ l )hn  = n(n+1)(2n+1)RetSn, (16) 

where the primes denote differentiation with respect to 5. The right-hand sides of 
( 1 3 )  and (15) involve summations R, and An coming from the right-hand sides of ( 1 )  
and (3),  when expressed in terms of 0 and $. These may be written as 

w m  

expressed in 

M(Z, m, n) = 

terms of the Wigner 3-j symbols in the form 

The Wigner 3-j symbols have been discussed fully by Rotenberg et al. (1959) and by 
Talman (1968). Those required in (18 )  and (19)  were calculated by Dennis & Singh 
(1978) from their definitions by a computer algorithm. 

Boundary conditions for the sets of equations ( 1 3 ) ,  (14) and (15 )  are obtained by 
considering the series (12 )  in relation to the boundary conditions for the basic func- 
tions a, $ and y. The conditions when 5 = 0 may be deduced from (9), although the 
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quantity 6 is not known and must be determined as part of the solution. The conditions 
for the functions f,([) are deduced from the assumption that the torque exerted by 
the fluid on the sphere is zero. If T* is the torque, Dennis & Singh (1978) give 

where p is the density of the fluid. If we put T* = 0 and substitute in the integral 
using (8) and (9), then 

fi(0) = 2f1(0), f,(O) = 0 (n = 2,3,4, ...). (21) 

The conditions for g,([) when [ = 0 are found by substituting the series for I,6 given 
in (12) into the conditions on this function and @/a5 in (9), which yields 

gl(0) = - 1, gl(0) = -2, g,(O) = gi(0) = 0 (n = 2,3,4, ...). (22) 

There are no direct conditions for A,([) when E = 0, although conditions are needed 
in order to  obtain numerical solutions of (16). The values h,(O) are determined as part 
of the solution in a manner similar to that used by Dennis & Singh (1978). 

The conditions to be satisfied for large [, which follow from (9), are that 

f,(8 + 0, e-85 g,(!3 + 0, e-% S X )  + 0 as 5 +a. (23) 

In  practice they must be satisfied approximately by imposing conditions that are 
effectively equivalent, to some measure of approximation, at a h i t e  value 5 = too. 
The satisfaction of these conditions follows quite closely the method of Dennis & 
Singh (1978). In  practice, instead of working in terms of g,([) we employ the functions 
G,(5) defined by the transformation 

g,([) = efgGfl(€J (n = 1,2, ...). (24) 

Substitution into (14) gives the set of equations 

where 

The boundary conditions for (26) are 

Gl(0) = - 1, Gi(0) = - Q, G,(O) = GA(0) = 0 (n = 2,3,4, ...), (27) 

e+EGfl(tJ+O, efEGh(E)+O as 5-+00. (28) 

In  the problem of flow between two rotating spheres considered by Dennis & Singh 
(1978), the functions a,([) and GA(5) must vanish on each sphere. In  the present 
problem, if the conditions in (28) are to be approximated a t  a finite value = &,, we 
must either assume that G,(E) and a;(() vanish at [ = Em or make use of an asymptotic 
expression for Q,(g) valid rn 5+00. It is difficult to find such an expression in closed 
form and thus we assume a,a conditions at large distances that 

fn&) = 0, Gn(Em) = 0, GA(5m) = 0,  (29) 

and subsequently ensure in the numerical process that cm has been taken large enough 
for the approximation to be valid. In effect we are replacing (28) by equivalent 
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conditions on a solid sphere at 6 = Em. We shall return to this point when the numerical 
results are described. 

We may now follow the procedure outlined by Dennis & Singh (1978).  If (25 )  is 
multiplied by e*kE for a given value of n and both sides integrated with respect to  f [  
from = 0 to 6 = Em we obtain 

where 81,n is the Kronecker delta and the upper and lower values on the right-hand 
side correspond to the upper and lower signs of the exponent on the left. The two 
equations (30) are used to obtain estimates of r,(O) and r,&) by expressing the 
appropriate integral as a quadrature formula. The method is almost identical to that 
of Dennis & Singh (1978) and need only be briefly summarized, using similar notation. 
The first integral in (30)  with the positive sign taken in the exponent in the integrand 
is written approximately as a quadrature formula 

(31)  cor,(Em)+Clrn(tm-h)+ * . *  +cprn(O) = 0, 

c o r n ( t m )  + c p r , ( O )  + Q = 0, 

where the integrand has been divided into p equal intervals of length h. This can be 
expressed as 

where Q is the sum over internal values. The second integral in (30 )  can similarly be 
expressed as 

In this case Q‘ consists of a weighted sum of values of r,(E) and in addition includes a 
contribution involving 

The quantities Q and Q’ in (32 )  and (33 )  are known approximately during the 
course of an iterative procedure of obtaining a numerical solution and hence estimates 
of rn(0) and rn(Em) may be found by solving (32 )  and (33) .  In  this way, through (26) ,  
estimates a, and 16, of h,( t )  a t  6 = 0 and Em are obtained to use as boundary con- 
ditions for the set of equations (15)  in the form 

(32)  

C i r , ( t m )  + cirn(0)  + Q’ = 0. (33)  

when n = 1. 

hn(O) = a,, hn(5m) = /3m (n = 122, . * * ) .  (34)  

The quadrature formula employed for approximating the integral in (30 )  is a special- 
ized one. The total number of intervals p is even and over each successive pair of 
intervals a modified type of Simpson’s formula is used in which rn ( f )  is approximated 
by a parabola rather than the whole integrand. The details are given by Dennis & 
Singh (1978).  In  the present case if, for a given value of h, K(k) is defined by 

1 
h2P ( 3  + e-%h) +- ( 1  - e-zkh 1’ 

1 1  
k 2hk2 

K(k) = --- (35)  

where k is given in (26 ) ,  then the coefficients required in (32 )  and (33)  are given by 

e-kL co = c; = K(k), ektm ci = cp = K (  - k ) .  

U ,  = GA - kG,, V, = Gh + kG,. 

(36)  

The set of equations (14)  is integrated by step-by-step methods by substituting 

(37)  
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The functions u, and on satisfy 

subject to the conditions 
uk + ku, = r,, v; - kv, = r,, 

un(0) = 0, un(5m)  = 0, V n ( 0 )  = -3al,,, Vn(fm, )  = 0. (39) 

The equations (38) are exactly the equations solved by Dennis 8c Singh (1978), 
although the boundary conditions for w , ( l )  are slightly different, and the same 
specialized integration techniques are applicable. For a given integer n, the first of 
(38) is integrated in the direction of increasing 5 subject to u,(O) = 0, since the integra- 
tion is stable in that direction. The second of (38) is then integrated subject to 
v,(f,) = 0 in the decreltsing direction of 5, since that integration is stable. Provided 
that the conditions (30) have been satisfied properly, all four conditions in (39) are 
found to be satisfied by this procedure. All the necessary formulae are given by 
Dennis & Singh (1978). 

The two sets of equations (13) and (15) are solved using standard finite-difference 
methods. A typical equation of either set can be written 

~ : ( f )  + a n ( 8  yk(5) + b n ( f )  yn(5) = 8fi(5), (40) 

where a,(E) and b,(f)  will include terms associated with the particular y,(f) or its 
derivative under consideration coming from the nonlinear sums R,([) or S,(f) in 
(13) or (15). Equation (40) is approximated using central differences, which gives 

{ ' - - ~ , ( f ) } y n ( 5 - h ) - { 2 - h B b , ( f ) } y n ( f )  +{I + -han(f)}yn(5+h)-h28n(f)  = 0, (41) 

at each station f of the same grid structure used to solve the set of equations (14). 
There is a set of finite-difference equations of type (41) for each differential equation. 
The set is solved iteratively by the Gauss-Seidel procedure subject to two-point 
boundary conditions. For (13) these are (21) together with the first condition of (29); 
for (15) they are the conditions (34) that have been deduced during the solution pro- 
cedure of (14). The whole set of procedures of solving (1  3), (14), ( 15) and calculating 
a, and Is, in (34) is performed in an iterative loop which is repeated until convergence. 
The boundary condition for f l ( f )  at f = 0 in (21) is satisfied by expressing f ; ( O )  in 
central differences, which gives the approximation 

(42) 

This may be used to eliminate the external value which appears when (41) is applied 
at f = 0 taking y,(f) to be f l ( f ) .  

fl( - h) = 2(1+ Wfl(0) -f,(h). 

4. Finite-difference method and solution procedures 
Several different two-dimensional finite-difference schemes can be used to approxi- 

mate ( l ) ,  (2) and (3) subject to the boundary conditions given by (7), and these vary 
considerably in accuracy and efficiency. Central differences can be used, but difficulty 
may then be encountered in solving the fmite-difference equations by iterative 
techniques, which may fail to converge unless severe under-relaxation is used, par- 
ticularly for high Reynolds numbers. The use of upwind and downwind differences in 
approximating the Navier-Stokes equations has been studied by Greenspan ( 1  968a), 
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Gosman et al. (1969), and Runchal, Spalding & Wolfshtein (1969). Approximation by 
such methods improves the convergence of iterative procedures of solution but at the 
expense of being only first-order accurate. The improvement in convergence arises 
from the fact that the finite-difference equations are associated with matrices which 
are diagonally dominant. Allen & Southwell (1955), Allen (1962), Dennis (1960,1973), 
Spalding (1972) and Roscoe (1975, 1976) have developed methods that are second- 
order accurate and have associated matrices which are diagonally dominant, but the 
coefficients of the finite-difference equations involve exponentials. 

A recent paper by Dennis & Hudson (1978) has shown that, for the vorticity- 
transport equation of the two-dimensional Navier-Stokes equations in Cartesian 
co-ordinates, a simple expansion procedure applied to the approximation of Dennis 
(1960) gives a set of finite-difference equations with coefficients free from exponentials 
but which preserves second-order accuracy and also has an associated matrix which 
is diagonally dominant. Dennis, Ingham & Cook (1979) extended the method to 
three-dimensional flows and subsequently Dennis & Ingham (1981) applied similar 
methods to the equations (1)-(3) governing the present problem. The approximation 
to (2) is the standard central-difference one but to (1) and (3) it is not. The approxima- 
tions to both (1) and (2) have associated matrices that are diagonally dominant but 
it is not possible to demonstrate a similar property for the approximation to (3). 
However, the method deals in a more satisfactory way with the nonlinear terms in 
(1) 'and (3) than the oentral-difference method and as a consequence may be expected 
to lead to improved convergence of iterative methods of solution. This was the case 
in trial calculations carried out by Dennis & Ingham (1981). Similar results have been 
found in the present work; no under-relaxation was necessary in the iterative cycles. 

The finite-difference equations employed to approximate (1)-(3) are given by 
Dennis & Ingham (1981) and need not be given again here. The solution procedures 
used here are identical. The boundary conditions for $, Ll and 5 as [ -+ 00 given in (7) 
must be satisfied at a large-enough value [ = trn and then the effect of increasing trn 
is studied. Some results of making tests of this nature were given by Dennis & Ingham 
(1981) and some further results are given in $ 5  of the present paper. The initial set of 
approximations to the solutions of (1)-(3) needed to start the iterative process of 
solution for small values of R and T is obtained from the results for T = 0 computed 
by Dennis & Ingham (1981). 

In  the case of solutions computed using the series-truncation method, the very 
small value trn = In 2 was first used for the outer boundary in each case, corresponding 
to an outer sphere of radius rla = 2. Solutions were first obtained using only one 
term in each of the series (12) and all others were assumed to be zero; this is the first 
truncation, no = 1. For this order of truncation a t  small values of R and T, an initial 
approximation was obtained by putting R = T = 0 in (13)-(15) and solving these 
equations for n = 1 subject to the corresponding boundary conditions obtained from 
(21), (22), (29) and (30). With trn = In2 this gives 

(43) 

where the superscript indicates the order of the iterate, in this case zero. This initial 
approximation det,ermines approximations to R,(g) and S,( ( )  in ( 1  3) and ( 1  5) and 

f!)([) = 0, 
hio)([) = &(90eg - 376e-6), 

gi0)([) = &( - 9e45+ 122e25- 186e[+ 56e-9, 
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then these two equations are solved approximately by applying the Gauss-Seidel 
procedure to the finite-difference equations (41) subject to their boundary conditions. 
In  the case of h&) the conditions (34) are used with a\o) and pio) determined from the 
approximation hio)([) in (43). 

Once a new approximation to h1(5) has been found, new approximations to a1 and 
p1 can be found by methods described in 0 3, and then (25) is integrated for n = 1 to 
determine Gl(t)  and Gi(EJ approximately. This completes one major iterative cycle. 
This is then repeated until the various functions converge to limits. Truncations of 
higher order for the same values of R and T are obtained by using lower truncations 
as starting approximations, assuming all new functions introduced to be initially zero. 
The only new point for a truncation of order no is that each step of the iterative cycle 
is carried out for all equations of the set from n = 1 to no in turn. The boundary 
values of h,(E) at E = 0 and 5 = Ern are calculated using t,he smoothing process 

h',""'(E) = Ah&) + (1 - A )  h p ( g )  (5 = 0, E r n ) .  (44) 

Here the superscript m refers to successive iterates, the values h,(c) for E = 0, Crn are 
values calculated using (26) from the values r,(O) and r,(Ern) determined from (32) 
and (33), and h is a relaxation parameter in the range 0 < h < 1. It would be possible 
to associate distinct values of h with the individual cases 6 = 0,t = tm in (44) but this 
was not done. 

For given values of R and T the iterative procedure of solution of (13)-(15) for a 
given truncation no is repeated until convergence. This is decided by the test 

It is only necessary to test the one set of functions h,(E), because, when these have 
converged to limit solutions, the other sets of functions are found by inspection to  
have converged to limit solutions also. After the solution for no = 3 had been obtained 
using these procedures, the effect of increasing Crn was studied. This parameter was 
increased to Em = 3, 3.5, 4 and 4.5 successively, and approximate solutions obtained 
for each case. Finally, in obtaining solutions for higher values of R and T, the approxi- 
mations already obtained for lower values of R and T were used as starting assump- 
tions. By this means solutions were obtained for R = 0.05, 0.1, 0.2 and 0.5, and for 
each value of R the values T = 0.05, 0.12 and 0.25 of the Taylor number were con- 
sidered. The maximum value no = 4 was used in each case, which appeared to give a 
satisfactory enough approximation. The values of h used in (44) were as follows. For 
all of R = 0.05, 0.1 and 0.2 the value h = 0.05 was used for T = 0.05, 0-12 and 
h = 0-02 was used for T = 0.25. For R = 0.5 the only change was to use h = 0.04 for 
T = 0.05, 0.12. 

5. Results 
Numerical calculations were performed using both the two-dimensional specialized 

finite-difference scheme and the series-truncation method. In  the two-dimensional 
scheme most calculations were carried out v+ ith grid sizes of and &r in the angular 
direction and the results with these two grid sizes were virtually the same. In  the 
radial direction a grid size as small as 0.01 was used, but in general a grid size of 0.05 
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5, 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

~~ 

T = 0,025 
r \ 

Series Finite-difference 
.4 

truncation equations T = 0.12 T = 0.25 T = 0.5 
- 1.316 1.340 1.412 1-617 
- 1.204 1.282 1 -400 1.626 

1.142 1.152 1.261 1-398 1.632 
1,111 1.125 1-254 1.398 1.630 
1.107 1.112 1.252 1.398 1.631 
1.108 1.107 1-251 - - 
- - 1.251 - - 

TABLE 1. Variation of DID, for R = 0.12 with the position of the outer 
boundary conditions at various values of T 

a 0.25 

I I I 
0 0.04 0.08 0.12 

a l h  

FICXJBE 1. Values of the drag on the sphere for R = 0.12. -, experimental results of Max- 
worthy (1965) versus a / h .  Present numerical calculations versus a/rm: ., T = 0-025; 0, 0-12; ., 0-25; 0, 0.5. 

was more than adequate in most calculations in order to obtain accurate results. It 
was possible to use the Gauss-Seidel iterative method in all the iterative procedures 
without any under-relaxation and, moreover, the finite-difference formula used to 
calculate the vorticity on the sphere (Dennis & Ingham 1981) could be employed 
without under-relaxation. It was found, however, that the  position of the boundary 

= 6 ,  was critical in all cases. 
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0.2>. 
- - 

- 

- 

- 

I I l l  I I I l l  I 
0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.30.40.5 1.0 

0 

0.06 

0.04 

- 0.1 1 

I I I I I 

0.10 O! 

The drag D on the sphere is given by the formula 

D = - p8J: @R cos e+ g) sin m e ,  (46) 

where Dsia the drag for Stokes flow, given by’D8 = 6npvUa. Herep is the dimensionless 
pressure in the fluid and p is the density. Evaluation of the drag from (46) was 
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1 I 

FIGURE 4. Streamlines for R = 0.5: (a) T = 0; ( b )  0.12; (c) 0.25; ( d )  0.5. 

performed using the results obtained from both numerical techniques; for the 
series-truncation method (46) becomes 

DID, = +{2h1(0) -hi(O)}. (47) 

Table 1 shows typical results for D/Ds as a function of 5, for R = 0-12. In the first 
instance, a comparison between the results for the two independent methods for 
T = 0.025 is given. There is reasonable consistency between the two sets of results; 
this was also found to be the case for other values of R and T. Thus the values for 
T = 0.12,0*25 and 0.5 presented in table 1 are those which were considered to be the 
most accurate after carrying out different solutions for different grid sizes using both 
methods, and for different orders of truncation when using the series-truncation 
method. It may be noticed from table 1 that a smaller value of is needed to obtain 
satisfactory results as T increases. 

Maxworthy (1965) noted in his experimental work that the ratio of the radius of 
the sphere to the radius of the cylinder in which the experiments were carried out, 
denoted by A, had a very significant influence on the measured drag, especirtlly for 
small T. Thus it is not surprising that, as indicated in table 1, the value of Em has to be 
large to deal with the boundary condition at infinity adequately. Figure 1 shows the 
experimental variation of DID, as a function of a / A  obtained by Maxworthy for 
R = 0.12 and T = 0.025, 0.12, 0.25 and 0.5. Also shown on the same figure is the 
variation of DID, as a function of air, obtained from the present results, where 
rm = aeEa, for the same values of R and T. As one would expect, t,he effect of imposing 
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FIGURE 5. Surface vorticity on the sphere for R = 0.6 and various values of T. 

numerically the outer boundary condition at a finite distance has many similarities 
with the positioning of the outer boundary in the experimental results. In all the 
calculations, results were obtained for several values of Em; these were extrapolated 
to estimate the results in an unbounded fluid. 

Figure 2 shows the calculated variation of DIDs as a function of R at various 
values of T, together with the experimental results of Maxworthy (1965) and the 
theoreticai results of Childress (1964). This latter theory is only valid for small values 
of both R and T. It is seen that 'all three sets of results are reasonably consistent. 
Figure 3 shows the variation of the differential rotation (3 = 1-6 as a function 
of the parameter a = 2T/R8 according to the present results and the work of 
Childress and Maxworthy. There is again very good agreement between the present 
results and the experimental measurements. Streamlines for R = 0.5 and T = 0, 
0.12, 0.25 and 0.5 are shown in figure 4 and the surface vorticity on the sphere 
for the same values of R and T in figure 5. For the case R = 0.5, T = 0 these 
results agree with results previously presented, e.g. by Dennis & Walker (1971). 
The effect of increasing T for a given value of R is to make the flow more symmetrical 
and also to increase the vorticity on the surface of the sphere, which tends to increase 
the drag. 

It is hoped eventually to extend the methods employed here to deal with larger 
values of R and T and to investigate the formation of the Taylor column. The main 
object would be to feet the discrepancy between experimental results and previous 
theoretical models of this phenomenon. It has not yet been possible to extend the 
present work beyond the small range of R and T considered here and at the same time 
be confident of the reliability of the numerical results. The principal reason for the 
difficulty is the problem of satisfying adequately the boundary condition at  large 
distances; this is undoubtedly the most sensitive part of the calculation procedure 
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and further developments must await a satisfactory method of dealing with this 
difficulty. 

The work is part of a general project supported in part by a grant from NATO and 
in part by the Natural Sciences and Engineering Research Council of Canada. 
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